Calculate the Distance Between Two GPS Points with Python (Vincenty’s Inverse Formula)

TL;DR - Vincenty's inverse formula provides an accurate method for calcualting the distance between two latitude/longitude pairs. Learn how to implement your own with Python.


Recently the work I have been doing requires a higher degree of accuracy than which the haversine method I was using could provide. This prompted me to implement a Python version of the Vincenty’s inverse formula. Unlike the Haversine method (which I posted about previously) of directly calculating the great-circle distance between two points on a perfectly spherical Earth, Vincenty’s formulae is an iterative method which more realistically assumes Earth as an oblate spheroid.

Before proceeding further, several values need to be defined:

VariableDefinition

a=6378137.0 a = 6378137.0

length of semi-major axis of the ellipsoid aka radius of the equator in meters (WGS-84)

f=1/298.257223563 f = 1 / 298.257223563

flattening of the ellipsoid (WGS-84)

b=(1f)a b = \left ( 1 - f \right ) a

length of semi-minor axis of the ellipsoid (radius at the poles, 6356752.314245 meters in WGS-84)
ϕ1,ϕ2 \phi_1, \phi_2 latitude of the points
U1=arctan[(1f)tanϕ1] U_1 = \arctan \left [ \left ( 1 - f \right ) \tan \phi_1 \right ] reduced latitude (latitude on the auxiliary sphere)
U2=arctan[(1f)tanϕ2] U_2 = \arctan \left [ \left ( 1 - f \right ) \tan \phi_2 \right ] reduced latitude (latitude on the auxiliary sphere)
L=L2L1 L = L_2 - L_1 difference in longitude of two points
λ1,λ2 \lambda_1, \lambda_2 longitude of the points on the auxiliary sphere
α1,α2 \alpha_1, \alpha_2 forward azimuths at the points
α \alpha azimuth at the equator
s s ellipsoidal distance between the two points
σ \sigma arc length between points on the auxiliary sphere

Using the values defined above, and the eight equations below, the process of iterating towards a solution can begin. Starting with the first equation on top, sequentially progress towards the last equation at the bottom where the output is λ. Once through the first iteration, simply use this newly calculated value of λ and dump it back into the first equation and repeat the process. The end game here is to minimize the value of λ.

sinσ=(cosU2sinλ)2+(cosU1sinU2sinU1cosU2cosλ)2 \sin \sigma = \sqrt{(\cos U_2 \sin\lambda)^2 + (\cos U_1 \sin U_2 - \sin U_1 \cos U_2 \cos\lambda)^2}
cosσ=sinU1sinU2+cosU1cosU2cosλ \cos \sigma = \sin U_1 \sin U_2 + \cos U_1 \cos U_2 \cos \lambda
σ=arctansinσcosσ \sigma = \arctan \frac{\sin \sigma}{\cos \sigma}
sinα=cosU1cosU2sinλsinσ \sin \alpha = \frac{ \cos U_1 \cos U_2 \sin \lambda }{ \sin \sigma }
cos2α=1sin2α \cos^2 \alpha = 1 - \sin^2 \alpha
cos(2σm)=cosσ2sinU1sinU2cos2α \cos \left( 2 \sigma_m \right) = \cos \sigma - \frac{2 \sin U_1 sin U_2 }{ \cos^2 \alpha }
C=f16cos2α[4+f(43cos2α)] C = \frac{f}{16} \cos^2 \alpha \left[ 4 + f \left( 4 - 3 \cos^2 \alpha \right) \right]
λ=L+(1C)fsinα{σ+Csinσ[cos(2σm)+Ccosσ(1+2cos2(2σm))]} \lambda = L + (1 - C) f \sin \alpha \left \{ \sigma + C \sin \sigma \left [ \cos \left ( 2 \sigma_m \right) + C \cos \sigma \left ( -1 + 2\cos^2 \left ( 2 \sigma_m \right ) \right ) \right ] \right \}

When the difference between the current value of λ and the value of λ from the previous iteration is less than the convergence tolerance, we can move on to the final stage (a convergence tolerance of 10e-12 translates to an accuracy of approximately 0.06mm).

u2=cos2αa2b2b2 u^2 = \cos^2 \alpha \frac{a^2 - b^2}{b^2}
A=1+u216384{4096+u2[768+u2(320175u2)]} A = 1 + \frac{u^2}{16384} \left \{ 4096 + u^2 \left [ -768 + u^2 \left ( 320 - 175 u^2 \right ) \right ] \right \}
B=u21024{256+u2[128+u2(7447u2)]} B = \frac{u^2}{1024} \left \{ 256 + u^2 \left [ -128 + u^2 \left ( 74 - 47 u^2 \right ) \right ] \right \}
Δσ=Bsinσ{cos(2σm)+14B[cosσ(1+2cos2(2σm))16Bcos(2σm)(3+4sin2σ)(3+4cos2(2σm))]} \Delta \sigma = B \sin \sigma \left \{ \cos \left ( 2 \sigma_m \right ) + \frac{1}{4} B \left [ \cos \sigma \left ( -1 + 2 \cos^2 \left ( 2 \sigma_m \right ) \right ) - \frac{1}{6} B \cos \left ( 2 \sigma_m \right ) \left ( -3 + 4 \sin^2 \sigma \right ) \left ( -3 + 4 \cos^2 \left ( 2 \sigma_m \right ) \right ) \right ] \right \}
s=bA(σΔσ) s = b A \left ( \sigma - \Delta \sigma \right )
α1=arctan(cosU2sinλcosU1sinU2sinU1cosU2cosλ) \alpha_1 = \arctan \left ( \frac{ \cos U_2 \sin \lambda }{ \cos U_1 \sin U_2 - \sin U_1 \cos U_2 \cos \lambda } \right )
α2=arctan(cosU1sinλsinU1cosU2+cosU1sinU2cosλ) \alpha_2 = \arctan \left ( \frac{ \cos U_1 \sin \lambda }{ - \sin U_1 \cos U_2 + \cos U_1 \sin U_2 \cos \lambda } \right )

Below is the Python implementation of the above equations. Note, I included a maximum number of iterations (maxIter=200).

#------------------------------------------------------------------------------+
#
#   Nathan A. Rooy
#   2016-SEP-30
#   Solve the inverse Vincenty's formulae
#   https://en.wikipedia.org/wiki/Vincenty%27s_formulae
#
#------------------------------------------------------------------------------+

#--- IMPORT DEPENDENCIES ------------------------------------------------------+

from __future__ import division
from math import atan
from math import atan2
from math import cos
from math import radians
from math import sin
from math import sqrt
from math import tan

#--- MAIN ---------------------------------------------------------------------+

class vincenty_inverse:
    def __init__(self,coord1,coord2,maxIter=200,tol=10**-12):

        #--- CONSTANTS ------------------------------------+
        
        a=6378137.0                             # radius at equator in meters (WGS-84)
        f=1/298.257223563                       # flattening of the ellipsoid (WGS-84)
        b=(1-f)*a

        phi_1,L_1,=coord1                       # (lat=L_?,lon=phi_?)
        phi_2,L_2,=coord2                  

        u_1=atan((1-f)*tan(radians(phi_1)))
        u_2=atan((1-f)*tan(radians(phi_2)))

        L=radians(L_2-L_1)

        Lambda=L                                # set initial value of lambda to L

        sin_u1=sin(u_1)
        cos_u1=cos(u_1)
        sin_u2=sin(u_2)
        cos_u2=cos(u_2)

        #--- BEGIN ITERATIONS -----------------------------+
        self.iters=0
        for i in range(0,maxIter):
            self.iters+=1
            
            cos_lambda=cos(Lambda)
            sin_lambda=sin(Lambda)
            sin_sigma=sqrt((cos_u2*sin(Lambda))**2+(cos_u1*sin_u2-sin_u1*cos_u2*cos_lambda)**2)
            cos_sigma=sin_u1*sin_u2+cos_u1*cos_u2*cos_lambda
            sigma=atan2(sin_sigma,cos_sigma)
            sin_alpha=(cos_u1*cos_u2*sin_lambda)/sin_sigma
            cos_sq_alpha=1-sin_alpha**2
            cos2_sigma_m=cos_sigma-((2*sin_u1*sin_u2)/cos_sq_alpha)
            C=(f/16)*cos_sq_alpha*(4+f*(4-3*cos_sq_alpha))
            Lambda_prev=Lambda
            Lambda=L+(1-C)*f*sin_alpha*(sigma+C*sin_sigma*(cos2_sigma_m+C*cos_sigma*(-1+2*cos2_sigma_m**2)))

            # successful convergence
            diff=abs(Lambda_prev-Lambda)
            if diff<=tol:
                break
            
        u_sq=cos_sq_alpha*((a**2-b**2)/b**2)
        A=1+(u_sq/16384)*(4096+u_sq*(-768+u_sq*(320-175*u_sq)))
        B=(u_sq/1024)*(256+u_sq*(-128+u_sq*(74-47*u_sq)))
        delta_sig=B*sin_sigma*(cos2_sigma_m+0.25*B*(cos_sigma*(-1+2*cos2_sigma_m**2)-(1/6)*B*cos2_sigma_m*(-3+4*sin_sigma**2)*(-3+4*cos2_sigma_m**2)))

        self.m=b*A*(sigma-delta_sig)                 # output distance in meters     
        #self.km=self.meters/1000                    # output distance in kilometers
        #self.mm=self.meters*1000                    # output distance in millimeters
        #self.miles=self.meters*0.000621371          # output distance in miles
        #self.n_miles=self.miles*(6080.20/5280)      # output distance in nautical miles
        #self.ft=self.miles*5280                     # output distance in feet
        #self.inches=self.feet*12                    # output distance in inches
        #self.yards=self.feet/3                      # output distance in yards

if __name__ == "__vincenty_inverse__":
    main()

Example usage:

>>> from vincenty import vincenty_inverse
>>> vincenty_inverse([39.152501,-84.412977],[39.152505,-84.412946]).m
2.7161912585815897

And that’s it! Not too difficult right? The final code can be found on my GitHub (here).